GD-GIBBS: a GPU-based sampling algorithm for solving distributed constraint optimization problems
نویسندگان
چکیده
Researchers have recently introduced a promising new class of Distributed Constraint Optimization Problem (DCOP) algorithms that is based on sampling. This paradigm is very amenable to parallelization since sampling algorithms require a lot of samples to ensure convergence, and the sampling process can be designed to be executed in parallel. This paper presents GPU-based D-Gibbs (GD-Gibbs), which extends the Distributed Gibbs (D-Gibbs) sampling algorithm and harnesses the power of parallel computation of GPUs to solve DCOPs. Experimental results show that GDGibbs is faster than several other benchmark algorithms on a distributed meeting scheduling problem.
منابع مشابه
An approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملDistributed Gibbs: a memory-bounded sampling-based DCOP algorithm
Researchers have used distributed constraint optimization problems (DCOPs) to model various multi-agent coordination and resource allocation problems. Very recently, Ottens et al. proposed a promising new approach to solve DCOPs that is based on confidence bounds via their Distributed UCT (DUCT) sampling-based algorithm. Unfortunately, its memory requirement per agent is exponential in the numb...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملFOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems
These days randomized-based population optimization algorithms are in wide use in different branches of science such as bioinformatics, chemical physics andpower engineering. An important group of these algorithms is inspired by physical processes or entities’ behavior. A new approach of applying optimization-based social relationships among the members of a community is investigated in this pa...
متن کاملThe Gibbs Cloner for Combinatorial Optimization, Counting and Sampling
We present a randomized algorithm, called the cloning algorithm, for approximating the solutions of quite general NP-hard combinatorial optimization problems, counting, rare-event estimation and uniform sampling on complex regions. Similar to the algorithms of Diaconis–Holmes–Ross and Botev–Kroese the cloning algorithm is based on the MCMC (Gibbs) sampler equipped with an importance sampling pd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014